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AN ANATYSIS OF THE TRANSIENT SOLIDIFICATION OF A FLOWING WARM LIQUID ON A CONVECTIVELY COOLED WALL
by Robert Siegel and Joseph M. Savino

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT

A study is made of the frozen layer that forms when a warm liguid flows over a flat plate that is
cooled below the freezing temperature of the liquid by & coolant flowing along the other side of the plate.
Three analytical procedures are employed and compared for accuracy and convenience in application. One is
an iterative procedure, yielding three analytical closed-form solutions, each successive solution being &
more accurate, higher order approximation. The two other analytical procedures require numerical integra-
tion for evaluation. Numerical results are presented graphically so that rapid estimates of frozen layer
growth can be made.

AUSZUG

Die Studie befasst sich mit der erstarrten Schicht die entsteht wenn eine warme Fliissigkeit iber
eine flache Platte fliesst und diese Platte durch ein Kihlmittel an der Unterseite auf den Gefrierpunkt
der betreffenden Fllissigkeit gebracht wird. Die drei verwendeten analytischen Methoden werden in Bezug
auf Genauigkeit und Bequemlichkeit der Anwendung verglichen. Eine von diesen drei Methoden ist iterativ
unduliefert drei analytische LOsungen in geschlossener Form, in denen jede Folgende eine genauere
Annsherung einer hCheren GrOssenordnung ist. Die beiden anderen analytischen Methoden erfordern
numerische Integration zur Auswertung. Numerische Ergebnisse werden graphisch dargestellt und machen da-
her rasches Abschétzen des Wachstums der erstarrten Schicht mSglich.

AHHOTAIIMA

HecxexyercAa 3aMOpDOXEHHHH cxoft ofOpasywmufica npr O6TeKaHMH IJIOCKOH ITACTHHKH Tenjo#
KRUIKOCTBHO C ONHOHW CTOPOHH M OXJaizuTeNeM ¢ Jpyrof#t cTopoHH. HcnoabaywTcA TPH aHAIUTHUYECKUX
IpUeMa KOTOphHE CPaBHUBAKWTCA HO TOUHOCTH M yROo6CTBY NpPUAOREHUA. OZUH ABIAETCA UTEDPATHBHEM
NpreMOM JanmKUM TPM BaMKHYTHX PpemeHnl Kaxioe U3 KOTODHX npelcrapiadeT 60JE€ TOUHOE NPUOIX-

KeHHEe BHCDero mopAika. OcTawmUeca LBa AHAJHTHUSCKUX IpHeMa IOJXKHH OUEHWBATCA YHCJICHHHM
HHTeTpupoBauneM. UHUCHEHHHE pPEe3yAbTATH NpeicTaBieHH rpaduueck# IIA OGHCTPOH OLEHKH pocTa

3aMOPOXEHHOT'O CJOA.

INTRODUCTION

This paper is concerned with the transient
solidification of a warm flowing liquid that is in
contact with a wall that is cooled below the freez-
ing point of the liquid by a coolant flowing on
the opposite side. This type of solidification
problem arises in important and familiar applica-
tions such as continuous casting of metals and
freezing of rivers. The application that motivated
the present study is concerned with a number of
advanced propulsion devices that utilize liquid-
liquid heat exchangers in which the coolant is at a
temperature below the freezing point of the warm
liquid. If the temperature or flow rate of the
warm liquid is low enough, a frozen layer will form
on the exchanger walls. The prevention of serious
flow blockage by excessive solidification requires
an understanding of the transient formation of the
solid layer on the exchanger walls.

The phenomenon of freezing {or melting) of a
material has been the subject of considerable math-
ematical analysis for two reasons. The first is
because of its practical importance in applications
such as mentioned sbove. The second is that the
problem offers a challenge for mathematical study
because the liquid-solid interface is a moving
boundary, which provides a nonlinear mathematicel
condition. Exact analytical solutions for the
transient frozen layer thicknesses and heat trans-
fer are usually difficult to obtain except for
boundary conditions of certain types. This has led

to the situation where in some instances physically
unrealistic boundary conditions have been imposed
in order to achieve a mathematical solution. Some
exact solutions for conditions of practical impor-
tance are summarized by Carslaw and Jaeger [1]1.

No attempt will be made here to review the mathe-
matical bibliography which is not directly perti-
nent to the present study. A few references which
provide various mathematical methods and have lists
of references are given by [2-5].

When an exact analytical solution cannot be
found, numerical or approximate methods must be em-
ployed. Murray and Landis [6] devised & numerical
finite difference technique and demonstrated it for
two sample problems. Cochran [7] developed a
lumped-parameter method, wherein all the heat ca-
pacity is lumped at the center of the frozen mate-
rial. A heat balance integral approach was demon-
strated on & variety of freezing and melting prob-
lems by Goodman [8] where the temperature distribu-
tion in the material was approximated by a second
or third order polynomisl to evaluate the integrals
of the conduction equation. Adems [9] employed an
iterative technique to find the frozen layer thick-
ness and heat transfer in metal castings with and
without accounting for the conduction into the
mold. This method does not involve any spproxima-
tions in principle, but provides an approximate re-
sult because in some instances only the first
iteration can be conveniently carried out in
analytical form.

lNumber in brackets denote references.
T™M X-52176
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The model chosen for study here is a one-
dimensional solidification of a liquid that flows
over one side of a thin flat wall (Fig. 1). The
other side of the wall is being convectively cooled
by a fluid that is at a temperature below the
freezing point of the liquid. The wall on which
the liquid solidifies is assumed to be sufficiently
thin so that the heat flow needed to subcool the
wall during the transient is negligible compared
with the heat flow through the wall. This heat flow
is comprised of the latent heat of fusion, the sub-
cooling heat capacity of the frozen layer, and the
convection at the solidified interface.

Three analytical methods will be employed. For
two of these the transient heat conduction equation
which governs the energy balance within the solid-
ified layer has been integrated in a general way to
provide an expression for the frozen layer growth as
a function of time. The general integrated equation
is evaluated for the present problem by using a
method of successive analytically iterated approxi-
mations and also by using an approximate temperature
profile of the type proposed by Goodman [8]. The
former technique has been utilized in a different
manner by Adems {9] for some other problems. The
analytical approximations are carried out here in an
improved manner so that higher order solutions can
be found, and an analytical expression very close to
an exact solution is obtained. The third analytical
method is one proposed by Goodman [8] where a heat
balance at the frozen layer-liquid interface is
used. The methods are compared with regaerd to accu-
racy and ease of application. One of the closed
form solutions represents for all practical purposes
the exact solution and is used to evaluate the finsl
results that are presented in graphical form.

ANALYSIS

The model chosen for this study is the one-
dimensional configuration shown in Figure 1. A warm
liquid at a fixed temperature T; flows over one
side of a thin plane wall providing a constant con-
vective heat transfer coefficiemt hj. A coolant at
a fixed temperature T. flows over the opposite
side of the plate providing a constant convective
heet transfer coefficient h,. A transient solidi-
fication process can then be initiated in a number
of ways such as by reducing the temperature or the
flow rate of the warm liquid, introducing the cool-
ant if it had not been flowing, or lowering T, of
the flowing coolant. These changes will cause the
wall to further cool until the freezing temperature
is reached on the surface of the plate exposed to
the warm liquid. At this instant (v = 0, X(1) = 0),
since the specific heat of the wall has been ne-
glected, a linear temperature distribution will
exist in the plate as shown in Figure 1, and solid-
ification is assumed to begin.

As the solid layer on the wall increases in
thickness, heat is being extracted from the boundary
layer of the warm liquid and is transferred by con-
vection to the liquid-solid interface. There it
combines with the latent heat released by the solid-
ification process and is conducted through both the
frozen layer and cold wall to the wall surface in
contact with the coolant, where it is convectively
removed. An additional amount of heat removal is
needed to subcool the frozen layer, and this is also
transferred to the coolant (the heat removal neces-
sary to subcool the wall is neglected in comparison
with the other heat flows). The solid layer con-
tinues to grow until it achieves & steady-state

thickness Xg. Constant properties are assumed
throughout the analysis.

Steady-State Thickness of Frozen Layer

In many solidification problems the frozen
layer never approaches a steady-state thickness;
rather it continues to propagate with time into the
liquid. When, however, the ligquid flowing over the
frozen layer is at a temperature above the freezing
point, the frozen layer will achieve a steady-state
thickness. This thickness will be used as a refer-
ence length in the later analyses of growing layers
and hence will be separately derived here.

It is assumed that the liquid-solid interface
at the boundary of the frozen layer is at the
freezing temperature Tp. If the heat flow is
taken as positive in the positive x direction,
the convected flux from the liquid to the liquid-
solid interface is

-q = hy(Ty - Ty) = constant
Using the overall heat transfer resistance between

the liquid-solid interface and the coolant gives
the relstion

T, - T
pig [
~q = hy(Ty - Tp) = 5
s,8 .1
k ky, h,
This is solved for the steady-state thickness
Te - T
kx -f c a 1
X, = =— 7 - k[ + — 1
s hy Tl - Te (kv hc) ()

For Xg = 0, Equation (1) gives the relation be-
tween variables required to just avoid freezing.
For example, solving for T; gives

T - T,

T =T+ — 2)
U P (&« L (

s 1 ky he

In order to prevent freezing the liquid temperature
T; must be equal to or greater than the value
given by Equation (2).

General Eguations for Frozen Tayer Growth and
Temperature Distribution

The heat flow within the frozen layer is
governed by the transient heat conduction equation,

d%r ar
k gx—z = pCp 37 (3)

Equation (3) is integrated from any position x
within the layer to the solid-liquid interface X

X
=pcp_[ L ax (2)

At the interface the heat conducted into the solid-
ified layer is equal to that supplied by the latent
heat of fusion and the convection from the flowing
liquid,

T

T
k3% X

-k E
X

K El 2o Eny(ny - 2) (5)

X
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i 5) is substituted into Equation (4) to X'
Etiu;ztlon (5) is sul q Lo 1+ Rx' fax' AT T 3 .
g , X 3 =T+r |ar TFRR v dx

T ax
'k&x=-pL'zi-'r-_hZ(Tl-Tf)+pcP,[ §@

(6) +/O.x'(/X-,Xl %f;d")dx' (10)

The term on the left side is the heat flow crossing
eny position x at any time 1. The last term on
the right is the heat removed to subcool the portion As a consequence of the nondimensionslization it is

of the solidified layer between x and X. The in- noted that two parameters S and R have appeared.

tegration of Equation (6) from the wall (x = 0) to Their physical significance is discussed in the

any position x results in an expression for the section RESULTS AND DISCUSSION.

instantaneous temperature distribution By applying the rules for differentiating
under an integral, the integral terms of Equa-

o(x,7) - Ty = % % x +,1;_7. (T, - Tp)x tion (10) can be transformed so that the derivative

is taken outside the integral signs, and Equa-
tion (10) becomes

X )4 X!
. %% or v o o 1L+ Bx' (X’ _.R8_of1 Vgt
kfo[[é_rd"dx (M T =1 <d1'+1) IT+rolrg) T &
)

To eliminate the variable T2 which is a func-

tion of time, Equation (8) is written at x =0 to x! L
give the heat flow at the wall, and this is equated + /o- _/x‘ , T ax' ax (11)
to the heat flow through the wall and into the cool-
ant,

ax By reversing the order of integration, the double
alx = 0) = -pL == - hy () - Tp) integral in Equation (11) can be transformed into

dt equivalent single integrals. This is accomplished

X o T, - Ly by first writing the double integral in terms of
+ pep f 5 ax= PR (8) dummy variables of integration n and B as
o T 1.2 follows:
h, Ky
Then Equation (8) is solved for T, and substituted
in Equation (7) to give
_ 1.8 ax T pLax . I Pep 3T
T =t +<hc+kw) O g +By(Ty - Tp) - oy / A I A 3r axjx - (9)
0
Equation (9) is then placed in dimensionless form
by letting x' = x/Xg5, X' = X/Xg, t' =hy(Ty - Tg)7/ %! X! — C
plXg, and T' = (T - T,)/(T, - Tg) and using Equa- _{ _{, T'(x',X') ax' ax
tion (1) in the form (Xghy/k) (Ty - Tp)/ [xv /.xv
(Te - T) =R/(1 +R) to give = T'(B,X') 48 an
1 < U .IO Jn

vwhere X' is treated as a constant. Reversing the
order of integration leads to

' v

X! x B ' x!
T'(B,X') ap dy = f T'(B,X') dn dp + f T'(g,X') dn dp
f ‘4‘ 0 x! 'é.

1
x' X!
= / BT'(B,X') ap + / x'"T'(B,X') ap
(o] *

X

Ie

x' X X X'
f f T(x',X') ax’ ax’ = f X'T(x',X') ax' + x' / T (xt,X') ax (12)
(o} ' (s} ot

ps

" Equation (11) then tekes the form

1

X X X
T'(x',X') =1 - 1—1152;-'-(‘;"—: + 1) - lRSRSa—'@f ' ax' + x! f Tt ax' +£ X' d.x‘) (13)
+ T + T 0

X
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X'
For convenience let I(x',X') = % f T' ax'
(¢]

X' >3
+x f T' ax' + _[ x'T" dx' and note that
xl

JdI/d1' = (JL/OX')(aX'/ax').
tion (13) tekes the form

1 1 1
gro.y o LEERX (gx_ +1>- RS QI ax' (14)

As a result, Equa-

1 +R \dr' T +R X' ar’

When Equation (14) is evaluated at the solid-liquid
interface x' = X', there results

_1+RX'[fax' RS _ 3G(X') dax'
1—1+R(dr'+l)+l+R3 axr (15)

where
X'
G(X")= I(x'=X",X' =lf T ax' + f x'T ax'
. R+ (o
Solving Equation (15) for dX'/ar' gives

dX' _ R(1 - X') (16)

& 1+ +RS S5

Separating the variables and integrating yields

X'
‘r'=f ;IRﬁ, dX'+Sf S-ax' (1)

0

When the first integral on the right is evaluated
and the second integral is integrated by parts, the

final expression for t' = 7'(X') is
Tt o=l-X - l;Rln(l-X)'F
G(X - GX) 4y
SiT / a - x)z (18)

This is the expression that will be used to compute
the frozen layer thickness as a function of time.
Since G(X') contains the temperature distribution,
this distribution is obtained frow Eguation {14)
with Equation (16) used to eliminate dX'/dt'. The
final relation for the temperature distribution in
the frozen layer becomes

oI
1+Rx'+RS =
m - BQ-x') x| r(1-x7) (19)
14R 1+R dG

1+RX'+RS ——+

Equation (19) is an integral equation for the
temperature T'(x',X'). To solve Equation (18),
Equation (19) tust first be solved so that the
integrals that' comprise G in Equation (18) can
be evaluated. Two methods for carrying this out
will be examined here.

The first method, and ultimately the more ac-
curete of the two, is an iterative technique where-
by the integrals in I and G are evaluated using
temperature distributions that are obtained from
successively better approximations of Equa-
tions (19). It appears that this procedure will
ultimately lead to an exact solution. In the sec-
ond method Equation (19) is not used. Instead
the temperature distribution to be used in G(X) of
Equation (18) is approximated by a second order
polynomial with coefficients that are evaluated
using the physical conditions at the boundaries of
the frozen layer. Since this approximate temper-
ature profile does not arise from the energy equa-
tion, the second method cannot yield an exact solu-
tion. The two methods are outlined in the next
sections.

Solution by Analytical Tterations?

An iterative procedure has been utilized by
Adams [9] for some solidification problems, and
before discussing the present method, a few com-
ments are in order. When Adems' procedure was ap-
plied to the present problem, the first iteration
(second approximation) resulted in a cumbersome
quadratic equation for dX'/dar'. After solving the
quadratic equation, a numerical integration was
required to determine X'(7'). A second iteration
would have been extremely difficult. Hence an al-
ternate approach was devised in which higher order
iterations could be analytically obtained thereby
leading to more accurate results. These will now
be presented.

A first order approximation to the temperature
distribution and growth times is found by neglect-
ing the effect of heat capacity within the frozen
layer. When the Cp becomes zero, the parameter
S = 0, and Equations (18) and (19) reduce to

1+R

= X -E— n (1 - X') (20)
R ﬁx)'(') o (-8 (22)

A second approximation for T' and
7' = 1'(X') was obtained by substituting Equa-
tion (21) for T} in Equations (18) and (19) with
the S terms now retained. After the integrations
in I(x',X') and G(X') are performed, the results
can be s1mp11f1ed to

{1 = 74 B DO T U
II =71 3(va 1) R(R +1)

and

2 ]
3 + 3R + R ln(l_x,)+ln(RX +1) (22)
3(1 + R)2 3R(1 + R)2
1 + RX'e + RS g—;;i
, _ R -X'¢) I R(1 - X')
T 1+R - TR Tl (23)

1+RX'+RS—-

2This will be referred to later as method "AI"
(Analytical Tteration).
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where
a6(x )} = R? £+.Xv_2+£f (24)
AT rme)E\gE R 3
3 ~ B2 1(x . ﬁ . szg . X'3§ _ x-Zgz . X|5§3) (25)
X" (1 +rx)2 [R\R 2 G ZR 6

When the procedure is repeated, that is, when Equation (23) is substituted into Equations (18) and (19),
the third approximation results, which is the final approximation evaluated here, that is,

T
(x") X' q (x
' =1 +S*——GII - _II( ) ax’ (26)
T-x xY
r I Lo(1-x)
oL |
1 +RX't +RS
o - R(L-X'e) : X7 |1q R(L - X")
III T+ R T+ R G (27)
1+RX' + RS G
I
where
3 3
1 Rl g2 RXC X e BX©
o x) - L TS qaey \TERTXTFT R s et wS)| o
I1I 1+R dt’ I 1 +R (1+R)(1+RX')2\R3 3R2 3R 15

e e (&
I

1+R dr’'

{1+ BRX")(L + RX'e)

N R3S r(l + Rx'g) (_ 2X' _SX' sx'3) +(1 + RR\(x'22 X'3§3):I
z
)

(1 +R)(1 + BX' R RN\ 2R 6

2R%s [+ ree)/ x2 _sx'3  sx'4 X', X'2)(x2%2  x'3e3
S S <7 Shau -2 Sl [N b SENA S) | .0 SN 4l 54
i (1 +R)(L + RX.)sl} R 2 6R 24 R 2 J\'eR 6

Rx'%
1 1
X'4E4 x'5¢5 L, fax ( + = )(1+RX§)
T T24R T 120 ax' \dr’ H) - R(T + R)
3.3
12:2 &'_é
+X 88 T3 . RSs (1+Rx'g)(_ﬁ_ﬁ_5x'4)
2(1 + R) (1 +R)1 + Ry N2 \ R P‘2 6R 24
(L B\ rBE | B pkt xS (29)
RT3 2R 5 Z4R T20
X '2 13
ae(x’)| _i1+@®-ux-r'? agax| \J T T3 R°S x'2+4 AR Sl S
T = + = - = +3z =5 —_
x| T+R =lac II)‘L 1+R (1+R)(1+RX")Z|zS 3 g 3R 15
1 g pyi?
L[ g o R3S (Q+4x'2 ex'5+zx'4)
1
(dr 1 T+R 100+ e\ v R 3
. 2R%s (ﬁ LS et 2x'5) (30)
(1 +R)(1 +RX')3 RS 3R2 3R 15
&l R -X)
& =
11 1+ Rmxt +Rs%-
1
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d fax’'
ax'tar!’

-2 .
2 3 2 3
_ N 3 (X' X! Xt 3 3 X' X
)-[(1+RX) +RS1—R2+—R+—3 R|(1 + RX")° + R el o
IT

% [2R(l - X')1 + RX') - (1 + Rx')z] S R(1 - X')(1 + Rx")° [3R(1 + BX")Z + RSS(LZ + % + X )] (31)

No attempt was made to analytically evaluate the
integral in Equation (26) as there did not seem to
be any advantage to doing so because of its alge-
braic complexity. Since the entire equation was to
be evaluated on a digital computer, the integration
was performed mmerically.

It is obvious from the complexity of the tem-
perature distribution Equations (27) to (31) that a
fourth analytically determined approximation would
be almost impossible to carry out. As will be
shown, a fourth approximate solution is unnecessary
because the AT method converged rapidly with the
first three approximate solutions.

Approximate Solution by Prescribed Temperature
Method3

The basic expression (Eq. (18)) that predicts
the dimensionless growth times 1' for a layer of
thickness X' contains integrals, in the function
G, of the instantaneous temperature distributions
in the frozen layer. Because the temperature dis-
tributions appear as integrands, the growth time
7' 1is not very sensitive to the exact shape of the
distribution. Therefore, using a reasonable ap-
proximation for the temperature profile should re-
sult in fairly accurate predictions for
' = 1'(X'). This ides was first applied to prob-
lems of freezing and melting by Goodman [8].

For the present problem, the temperature pro-
file within the frozen layer is approximated by a
second order polynomial of the form

T' = A(X' - x'") + B(X' - x')2

(32)
Equation (32) already satisfies the boundary condi-
tion that the temperature is equal to Ty at the

liquid-solid interface. Two additional boundary
conditions are used to evaluale A and B. The
boundary condition at the wall is that the follow-
ing heat balance be satisfied:

3T -t
k3

=& ¢
x=0 L , &
h Tk,

which has the dimensionless form

aTl

S = R[T'(x' = 0) - 1] (33)

x'=0

Substituting Equation (32) into Equation (33) pro-
vides the condition

-A - 2X'B = R(AX' + BX'Z - 1) (34)

The second boundary condition is at the liquid-
solid interface and is given by Equation (5).

sThis will be referred to later as method "PP"
(Prescribed Temperature).

R

BEquetion (5) is modified in order to express it
entirely in terms of T, without aX/dv appear-
ing, by using the following relation which can be
written for any location in the frozen layer:

or or

= + a
ar = S| ax + §| dr
T X

At the instant when the interface moves through
position x, x = X, dx/dt becomes dX/dr, and the
derivative d’l‘/d'r = 0 since the interface is al-
ways at Tp. Then

o & _ o
x dt ot

at interface
at given time

at fixed x as
interface moves
across that x

This is used to eliminate dX/dt from Equation (5)

o
o7 ot N
ol _ L _X 1 -
ox k o g (- T
X Ax
X

If the relation OT/dt = (k/pcp)(azT/axz) from the

conduction equation is used, this boundary condi-
tion can be rearranged into

2
2 h
or Lot (r, - 1) or
ox o 32 k 1 7 3x
X P X X
In dimensionless form it becomes
2
2l I N -G ) IS W 34 (35)
ox' 8 512 1+R x'
X x xe X

The temperature profile (Eq. (32)) is substituted
into Equation (35), and the result is rearranged
into

which gives B when A is known. Equations (34)
and (36) are solved simultaneously to yield A

A= R _ 1l + RX' + - R
2(1 +R)  g(zx' + RX'?) 2(1 + R)

, 1/2
L1t RX - ] . 2 - } (37)
s(2X' + RX' ) s(2X' + RX' )
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The coefficient A is the root of a quadratic
equation, and the positive sign in front of the
square root was chosen so that A  would approach
the proper limit as steady state is achieved. The
1limit is found by reelizing that the steady-state
temperature profile in the frozen layer must be
linear and hence from Equation (32), B(X' - 1) = O.
Then from Equation (36), A(X' » 1) = R/(1 + R),
which is also the limit of Equation (37).

Equations (36) and (37) give A and B as
explicit functions of X'; hence, the temperature
distribution, Equation (32), is given as a func-
tion of X' and x'. The temperature distribu-
tion is then used to evaluate the integrals in
Equation (18)

The quantity G(X') is

'3 14
G(X') =%<ﬁx'2 +%X‘5> M SR (28)

2 6 1z

while the quantity

X! '
_GQ(__Z_ ax: (39)

(0] (l - X')z

hes to be integrated mmerically because the A
and B contained in G are very complicated func-
tions of X'. Equation (18) is then evaluated to
give the time required to form a thickness of
frozen layer, 1! = 1'(X'), for any velues of the
parameters R and S.

With A and B known as a function of X!
and hence as a function of ', the temperature
profile in the frozen layer can be evaluated at
any time during the layer growth from Eguation
(32), which can also be placed in the form

T AX'(1 - ) + BX'2(1 - £)8 (40)

Determination of Frozen layer Growth by
Integ.:ating Heat Balance at Liquid-

Solid Interface?

This alternate approach suggested by
Goodman [8] begins with the interface condition

VR

that follows Equation (34)

% x %
ax _ _ _ Ix_ _ PCp ax®
dr OT or

= x

X X

This has the dimensionless form

>
2
ax’ 1+ Rox' (41)
at’ = " T RS Qapf
ox'

The approximate temperature profile, Equa-
tion (32), is used to evaluate the derivatives
at the interface to give

4This will be referred to later as method
"IF" (Interface).

ax' _1+R2B
dt' - RS A

n

The quantity B is eliminated by using Equa-
tion (36), and the variables are then separated.
The result is integrated to yield

X!
T
Tt = _dx____ (42)
1 +R
A——R—-l

0

This was integrated numerically for various R

and S using A as a function of X' from Equa-
tion (37). As in the previous method, the tempera-
ture distribution is found from Equation (40) with
B obtained from Equation (36).

RESULTS AND DISCUSSION

Significance and Ranges of Parameters and
Dimensionless Variables

The subcooling parameter S = cp(Tf - Tc)/L
appears because of the manner in which specifie
heat term was nondimensionalized in the basic
equations. Although the numerator cyo(Tp - T.) is
the maximum internal energy that could be removed
if a unit mass of the solidified material were sub-
cooled from the freezing temperature to the lowest
temperature in the system Te, the parameter does
not give any indication of how much subcooling is
actually experienced by the frozen layer. As the
coolant temperature approaches absolute zero, S
increases to a maximum value. For many materials
employed in engineering practice such as molten
metals and water, the maximum S is approxi-
mately 3.

The parameter R B (Xs/k)/[(l/hc) + (a/kw)]
is a ratio of heat flow resistances. The Xs/k is

the resistance offered by the steady-state thick-
ness of the frozen layer, while (1/h,) + (a/k,) is
the resistance offered by the wall and the convec-
tive coefficient on the coolant side of the wall.
Since the thickness Xg can be very thin, the
value of R can approach zero. For large Xg or
if h, is large and a,/k.',', small, R can be very
large; hence, R can range from zero to infinity.
To aid the clarity of the discussion and the
physical understanding of the reader, it is con-
venient to regard the parameter R as a measure
of the steady-state frozen layer thickness Xg

for fixed values of hq, &, k, and k.

The steady-state frozen layer thickness Xg
in Equation (1) depends on the many independent
variables in the system. For example increasing
the liquid temperature T3, the liquid hest trans-
fer coefficlent hj, or the coolant temperature
Te; or decreasing the coolant side convective coef-
ficient he all decrease the steady ice layer
thickness. The dimensionless instanteneous solidi-
fied thickness X' = X/XS varies by definition
from zero to unity.

The dimensionless time given by

Thl(Tl - Tf)
PLXg
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is the ratio of two heat flow quantities. The

Thy (T, - T¢) is the total heat convected from the
warm liquid to the surface of the frozen layer dur-
ing the time 1. The pLXg 1is the amount of
latent heat that is removed to form the steady-
state frozen layer. A large ' indicates that
the heat convected to the frozen layer by the warm
liquid has been large compared with the heat of
solidification.

Comparison of Solutions

Figure 2 shows the growth of the solidified
layer as predicted by four different equations pre-
sented in the analysis for several values of the
parameters R and S > 0. Also included are re-
sults for the case where the subcooling in the
frozen layer is neglected, S = O as computed from
Equation (20). First consider the lower set of
curves where R = 0.01 which corresponds to thin
frozen layers. In the limit when heat capacity is
neglected, S = 0, all the solutions obtained from
Equation (18) are in agreement, by definition, with
that given by Equation (20). When S 1is increased
to its maximum practical value of 3, all of the
solution methods are in agreement and are only
8lightly removed from the S = 0 curve.

The upper set of curves are for a thick frozen
layer (R = 100). The curves for S = 3 represent
the extreme case of large heat capacity effects
coupled with a thick frozen layer and provide the
maximum deviation between the calculation methods.
One of the most significant findings is the very
close agreement between the second and third

ry . Iy 1" " " n
analytical iterations (curves AIII and AIIII ).

This indicates that the third iteration has con-
verged very close to the final solution. This will
also be shown by the temperature distributions
which will be given in Figure 3. Hence for prac-
tical purposes the third iteration can be regarded
as the correct solution. The method using a pre-
scribed temperature profile (PT curves) is in very
good agreement with the analytical iterations, and
hence the prescribed temperature method can also be
used with good accuracy for the present problem.
The interface method (IF curves) deviates somewhat
from the other methods, but at a given ' still
provides X' values within 5 percent of the cor-
rect solution. The reason for this deviation
stems from the fact that the growth times are re-
lated to the first and second partial derivatives
of the temperature at the interface (Eq. (41)).
For the IF method these derivatives are obtained
from the approximate temperature profile (Eq. (32))
rather than from a solution of the energy equation
as in the AT method.

Temperature Distributions Within Freezing lLayer

A few temperature distributions within the
freezing layer are shown in Figure 3. The dimen-
sionless temperature is shown as a function of po-
sition within the layer for four different dimen-
sionless layer thicknesses. An interesting char-
acteristic is that all the temperature profiles are
fairly close to being linear. The heat convected
by the warm liquid to the interface combined with
the latent heat of fusion that also arises at the
interface, is conducted through the frozen layer
and tends to establish a linear temperature pro-
file. The heat capacity of the layer however tends
to produce a curved profile. The fact that most of

the temperature profiles are nearly linear suggests
that the subcooling energy is small compared with
the convective and latent heats at the frozen layer
interface.

Figure 3(a) shows the temperature distribu-
tions as computed by various methods for a large
value of both R and S. The rapid convergence of
the successive analytical iteration solutions (AI)
is demonstrated. The difference between the tem-
perature distributions for the second and third
itergtions is very smell. It appears that a fourth
approximation would be indistinguishable from the
third approximation and would have an insignificant
effect on the frozen layer growth curves in Fig-
ure 2. The profiles evaluated from the prescribed
temperature (PT) and interface integration (IF)
methods are not too far removed from the analytical
iteration profiles. Figures 3(b) and {c) show how
the agreement of all the methods is improved as
either 8 or R is made smaller.

Solidification Times as a Function of R and S
Parameters

While all the solutions agree well with the
third analytical iteration which is taken to be the
correct solution, they vary considerably in their
form and difficulty of evaluation. The simplest
solution is Equation (20) for the S = O condi-
tion, but its range of application is restricted to
small R values as indicated by Figure 2. The
second analytical iteration, Equation (22), is
quite accurate for all ranges of R and S and
has a form that can be easily and quickly evaluated
even on a desk calculator if necessary. The third
AT, PT, and IF solutions all require a digital com-
puter for their evaluation. For these reasons the
second AT solution 1s the most convenient analyti-
cal form given here for use in engineering applica-
tions. The graphical results which will now be
presented were evaluated from the third Al solu-
tion (Eq. (26)).

In Figure 4 is presented the dimensionless
time ' against R with S as a parameter.

Each group of curves gives the 1t' required to
form a given frozen layer thickness X'.

At each X' it is interesting to note the be-
havior of the group of curves as R becomes small.
All the curves for S ;! 0 approach the curve for
S = 0, which mcane that the effect of heat capacity
tends to become negligible as R diminishes. A
small R means that the temperature drop across
the frozen layer is small compared with the total
drop across the wall resistance and convective re-
sistance on the coolant side. This means that for
small R the actual frozen layer subcooling is a
small part of the maximum possible subcooling
Ty - T,. Hence the effect of the S parameter
dies away at small R.

As R Dbecomes large it is seen that for any
X', the t' is greater as S 1is increased from O
to 3. From this fact two important observations
can be made concerning the subcooling of the frozen
layer. The first observation is that when the heat
cepacity is not included in an analysis of a grow-
ing frozen layer, serious errors can result in the
predicted growth times. This conclusion will be
shown as follows by comparing, for a fixed R, two
cases, one where the specific heat is neglected so
that S5 = 0, and another where S > 0. Under these
conditions all the conditions such as the h,, h,,
Tys Tor ks Ky, X5, remain the same for both cases.
The ratios of the times 1' and T for S =0
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and S > 0 are then equal; that is,

1

Tcp>0 _ Tep>o
T o g
cp=0 cp=0

From Figure 4 it is found that the ' ratio is
always greater than unity and hence Tcp>0 > 1cp =0
Thus, & simplified analysis neglecting heat capac-
ity will always lead to predicting growth times =
that are too short.

The second observation is that, when the heat
capacity is properly accounted for, the dimensional
time 1 does not increase as 1t' increases when
the S parameter of the frozen layer is increased.
In fact the opposite is generally true, 7 de-
creases. For a given solidifying meterial 8 is
increased by lowering the coolant temperature T,.
A lower coolant temperature, however, increases
the solidification rate which more than compen-
sates for the increased heat capacity that must be
removed. This will now be discussed in more de-
tail.

Consider a fixed R and a fixed steady-state
frozen layer thickness Xg. For a given liquid
where L, Cyps and Tp are assumed constant, an in-
crease in S is accomplished by lowering the cool-
ant temperature T.. Then since R depends on
X, and X contains the ratio (T; - Tc)/

hy(Ty - T¢), the quantity hy(Ty - Tp) must be pro-

portionately increased to keep Xg unchanged. If
S is increased from §; to S5, then

[hl(Tl ) Tf)]z Sy

[hz(Tz - Tf)ll s

Using the definition of the dimensionless time re-
sults in

Tz[hz(Tz - Tf)]2 o
Tl[hl(Tl - Tf)]l B

From Figure 4, it is found that for any X/Xs the
ratio S,/8) is always larger than 7t3/7{ so that

e e - [ T SU P ro
lz ~ ll. The conclusion is that when a frozen

layer of a specified steady-state thickness is be-
ing formed in a given liquid, the layer will grow
faster as the coolant temperature T, is decreased
even though the subcooling of the frozen layer is
thereby increased.

Another feature of Figure 4 is that for any
given X' the 1' 1is essentially no longer de-
pendent on R when R > 100. This implies that
for large R's, the combined thermal resistance of
the wall on which the layer is formed and the cool-
ant convective resistance is negligible when com-
pared to that of the frozen layer. As & conse-
quence, the instantaneous frozen layer thickness
is governed solely by the degree of subcooling im-
posed on the layer. This is shown by the follow-
ing simple relation derived from the second ap-
proximate iterative solution (Eq. (22)) by taking
a limlt as R » =

[
Iy

U)l *2)
3V

Y
A

11

. 348
* =73

IT R

(-x" - 1m]1 - x'|) (43)

where the expression in parentheses is the S =0
solution, Equation (20), for large R. A compari-
son of Equation (43) with Figure 4 shows that the
equation fits the curves quite well for R > 100.
As a consequence, the factor (3 + 8) /5 represents
a correction factor that can be used to get rapid
estimates from the S = 0 solution for R > 100
and 0 <5 < 3.

One important aspect of Figure 4 is its use-
fulness in making rapid estimates of the thickness
X against time 1 for any given R and S. To
illustrate, consider a given liquid, coolant, and
wall material where the properties are known and
the T;, T,, h;, h, are specified. With this
information given, the quantities R eand S can
be calculated. Then from Figure 4, the 1' values
cen be found by simple interpolation for each X'
shown. Having obtained values of 1' against X',
the relation between dimensional Tt and X can
easily be calculated from the definitions of T’
and X'.

CONCLUDING REMARKS

The goal of the analysis was to develop a
means for predicting the transient growth of the
frozen layer that forms when a flowing warm liquid
is in contact with a cold flat plate that is con-
vectively cooled on the opposite side. This goal
was achieved by employing two basic approaches to
the problem: (1) a growth relation obtained by in-
tegrating the transient conduction equation over
the entire frozen layer thickness and (2) a heat
balance gt the frozen layer-liguid interface.

By use of & proper dimensionless layer thick-
ness and time variable, the frozen layer growth
can be expressed as a function of two parameters.
One parameter provides a measure of the maximum
possible subcooling energy of the frozen layer as
compared with the latent heat of fusion. The sec-
ond is the ratio of the heat flow resistance of the
steady-state layer, to the combined resistance of
the wall and convection coefficient on the coolant
side.

From the two snalytical approaches five solu-
tions were developed, four from the first approach
and one from the second. All solutions except one
gave accurate predictions of thickness sgainst time
for all values of the parameters. The one excep-
tion wes velid for only thin frozen layers where
subcooling was unimportant, as this solution had
neglected the heat capacity of the frozen layer.

Of the accurate solutions, two that were analyti-
cally derived successive iterations were the most
convenient to use and the most precise. The form
of one of these iterative approximations was suf-
ficiently simple that it could easily be evaluated
on & desk calculator. The other, from which the
graphical results were prepared, appeared well con-
verged to the correct solution.

The results of this analysis led to several
conclusions. The first is that the subcooling of a
frozen layer during its formation slows the growth
rate substantially for some conditions. This is
particularly true of thick layers. The second is
that the temperature profiles in the frozen layer
were found to be almost linear at all times. This
suggests that the energy required to subcool the
frozen layer is much less than the combined convec-
tive and latent heat passing through the layer.
lastly, the analytical iterative technique developed
here resulted in a rapidly converging means for
solving the nonlinear transient freezing problem.
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NOMENCLATURE

O wWe
w;ﬂL"g‘WB',d

> HHa W

o

A QDY MM

coefficient of linear term in Eq. (32)
thickness of cooled wall

coefficient of quadratic term in Eq. (32)
specific heat of solidified material

convective heat transfer coefficient
thermal conductivity of solidified material
thermal conductivity of wall

latent heat of fusion

heat flux in x direction

dimensionless parameter:

(%s/%)/ [(1/e) + (a/,)]
dimensionless parameter: cp(Te - Tc)/L
temperature
dimensionless temperature,

(T - Te) (Te - T¢)
thickness of frozen layer
dimensionless thickness of frozen

layer, X/Xg
thickness of frozen layer at steady state
position coordinate in frozen layer
dimensionless coordinate, x/Xe
dimensionless coordinate, x/X
density of solidified material
time
dimensionless time, thy(Ty - Tg)/pLXy

Subscripts:

refers to coolant

at freezing point

liquid phase of solidifying substance

interface between frozen layer and wall
IT, successive lterative approximations
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Figure 1. - One-dimensional mode! of transient solidification of

awarm liquid on a convectively cooied piate.
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Figure 2. - Comparison of methods for predicting the instantaneous thickness
of the frozen layer. (Some curves dotted for clarity only.)
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Figure 3. - Temperature distributions in frozen layer com-
puted by various methods. (Some curves dotted for clarity
only.)
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